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The local-energy-transfer (LET) theory (McComb 1978) was used to calculate freely 
decaying turbulence for four different initial spectra at low-to-moderate values of 
microscale Reynolds numbers (Rh up to about 40). The results for energy, dissipation 
and energy-transfer spectra and for skewness factor all agreed quite closely with the 
predictions of the well-known direct-interaction approximation (DIA : Kraichnan 
1964). However, LET gave higher values of energy transfer and of evolved skewness 
factor than DIA. This may be related to the fact that LET yields the k-% law for the 
energy spectrum a t  infinite Reynolds number. 

The LET equations were then integrated numerically for decaying isotropic tur- 
bulence at high Reynolds number. Values were obtained for the wavenumber spectra 
of energy, dissipation rate and inertial-transfer rate, along with the associated 
integral parameters, at an evolved microscale Reynolds number Rh of 533. The pre- 
dictions of LET agreed well with experimental results and with the Lagrangian- 
history theories (Herring & Kraichnan 1979). In particular, the purely Eulerian 
LET theory was found to agree rather closely with the strain-based Lagrangian- 
history approximation ; and further comparisons suggested that this agreement 
extended to low Reynolds numbers as well. 

1. Introduction 
As is well known, the fundamental problem in the theory of well-developed 

turbulence is the need to close the infinite hierarchy of moment equations. This 
hierarchy is generated when one averages the Navier-Stokes equations. Thus the 
‘closure problem’, in one form or another, stands in the way of engineering 
calculations and fundamental studies alike. In the former, it is normally seen as the 
need to relate single-point quantities (e.g. the mean velocity, the Reynolds stress) 
to each other. In the latter, it involves two-point quantities and is usually studied 
in the context of isotropic turbulence, where the mean rate of shear is zero and the 
moment hierarchy may be studied in isolation. Although this introduces some 
artificialities, and indeed problems in making direct comparisons with experiment, 
these are generally taken to be outweighed by the reduced level of complexity. 
General discussions of the study of isotropic turbulence will be found in the books 
by Batchelor (1971) and Leslie (1973). 

In this paper we are concerned with the numerical calculation of a particular 
closure approximation for isotropic turbulence (McComb 1974, 1976, 1978 : the last 
one to be cited hereafter as I). This closure is based on the idea that the response 
of the system may be calculated from the local (in wavenumber) behaviour of the 
renormalized energy equation. Closure is achieved in terms of the energy spectrum 
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and the velocity-field propagator ; and second-order equations have been obtained 
for these quantities (see I) .  We shall call it the local-energy-transfer (LET) theory. 

As a second-order two-point closure, the LET theory belongs to a class which may 
be loosely described as renormalized perturbation theories (Kraichnan 1959, 1965 ; 
Wyld 196 1 ; Edwards 1964 ; Herring 1965,1966 ; Lee 1965 ; Edwards & McComb 1969 ; 
Phythian 1969; Balescu & Senatorski 1970; Nakano 1972). The general approach 
involves renormalizing a perturbation series for the energy spectrum, in terms of a 
second function (variously called the response function, velocity-field propagator or 
effective viscosity). Only second-order terms of the renormalized expansion are 
retained, Each theory leads to (essentially) the same equation for the energy spectrum, 
whereas differences in approach tend to be reflected in different equations for the 
response function. 

Adiscussion of some of these theories will be found in Leslie (1973). Also, more-recent 
functional formulations have been given (Martin, Siggia & Rose 1973 ; Phythian 1975, 
1976). Here we shall just make a few remarks in order to put the present work in 
perspective. 

Turbulence research was much influenced during the 1960s by the Kolmogorov 
(1941) theory, which predicts that the energy spectrum in the inertial range is given 

E ( k )  = a c w ,  (1.1) 
by 

where c is the rate of energy dissipation, k is the wavenumber and a is a constant. 
This form is in good agreement with experiment (Grant, Stewart & Moilliet 1962, 
Champagne 1978), but higher-order moments are sensitive to intermittent effects and 
the Kolmogorov theory gives less satisfactory results for these. There is therefore a 
growing school of thought (see e.g. Kraichnan 1974; Frisch, Sulem & Nelkin 1978) 
that the inertial-range spectrum should take the form 

E ( k )  = a ( c ) W ( k L , ) + ,  (1.2) 

where (c) is the mean dissipation rate, Lo is the lengthscale of the largest eddies and 
p is the exponent in a power-law form for the spatial covariance of the fluctuating 
dissipation. 

During the 1960s i t  seems to have been widely assumed that closure approximations 
should be compatible with (1 .1) .  Indeed it was the failure of DIA (Kraichnan 1959), 
the functional probability method (Edwards 1964), and other similar methods, to 
yield (1 .1)  a t  infinite Reynolds number, which led to further attacks on the closure 
problem (Kraichnan 1965; Edwards & McComb 1969). In  particular, Kraichnan 
(1965) reworked the direct-interaction approximation (DIA) in a Lagrangian-history 
coordinate system in order to ensure invariance under random Galilean transforma- 
tions. Also, Edwards & McComb (1969) modified the functional formalism of Edwards 
(1964) to maximize the turbulent entropy. Both these theories have the k-f spectrum 
as the infinite-Reynolds-number solution, although the former requires a Lagrangian 
frame and the latter is independent of time. So far the main claim of LET (see I) 
is that it  is a time-dependent theory which is compatible with the Kolmogorov 
distribution within an Eulerian coordinate system. 

At a fundamental level, the relevance of this claim may seem unclear. If (1.2) is 
the correct solution (that is, if ,u =i= 0, although quite certainly p is too small for 
measurements of E(k)  to distinguish between the two forms given above), can (1 .1)  
still be regarded as a fundamental test for turbulent closures 1 Or, alternatively, are 
closures that lead to E( k) - k-5 to be regarded as wrong 1 

Although forms like (1.2) are currently receiving a great deal of attention, the 
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questions just posed have been very largely ignored. Clearly there is a need for 
extensive discussion of these points. However, we shall not attempt to pursue this 
here. In  the present work we shall take the pragmatic view that the predictions of 
LET should be compared with experimental results and with the predictions of other 
closures. Insofar as the k-2 law is borne out by experimental measurements a t  high 
Reynolds numbers, we shall also make comparisons with the Kolmogorov spectrum. 

Finally, we would emphasize the special status of the direct-interaction approxi- 
mation (Kraichnan 1959). This arises not just from its pioneering role but also from 
the fact i t  has been the most intensively studied of theories and has had many 
successes in terms of quantitative predictions (for a summary see Kraichnan 1982). 
This is true of both its Eulerian (Kraichnan 1959) and Lagrangian (Kraichnan 1965) 
forms. From our present point of view, we are particularly interested in the ability 
of the Eulerian DIA to predict the evolution of the energy spectrum in time from 
arbitrary initial conditions a t  low-to-moderate Reynolds numbers (Kraichnan 1964). 
We shall discuss this in more detail later on: for the present we merely note that, 
under these circumstances, the quantitative predictions of DIA are generally very 
good but there is some tendency to underestimate energy transfers a t  high wave- 
numbers. This shows up particularly in the calculation of the skewness factor 
(Herring & Kraichnan 1972). 

The performance of the Lagrangian-history form of DIA, and its extensions 
(Kraichnan & Herring 1978; Herring & Kraichnan 1979), will be discussed a t  a later 
stage when we deal with the calculation of LET at high Reynolds numbers. 

2. The basic equations 
I n  this section we summarize the LET equations for the correlation and propagator 

functions. We begin by fixing the notation. Let us consider an incompressible fluid 
occupying a cubical box of side L. At a later stage we shall take the limit L+ co (which 
is required for rigorous isotropy) and summations will then be replaced by integrals. 
If we let the velocity field be Ua(x, t )  then the Fourier components of this are defined 

Ua(x,  t )  = Ua(k, t )  eikx. (2.1) 
by 

k 

The equation of motion may be written as 

and the continuity equation becomes 

where the inertial-transfer operator Maby(k) is defined by 

and Dap(k) = ~T,b-k,k,lk(-~. 

The pair correlation of velocities may be defined thus : 
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where ( ) means average value. For isotropic turbulence the correlation function 
Q(k; t ,  t‘) may be introduced through the relationship 

Qap(k ; t ,  t‘) = D,p(k) Q(k; t ,  t’),  

E(k ,  t )  = 4nk2Q(k; t ,  t ) .  

(2.7) 

(2.8) 

In LET (see I), the equations for both Q and the exact velocity propagator H are 
obtained directly from the primitive perturbation series (cf. Wyld 1961 ; Lee 1965). 
Renormalization is anticipated by introducing the exact propagator formally thus : 

and the expression for the energy spectrum follows in the usual way: 

U,(k, = Ha#; 4 8) U,(k s), (2.9) 

(2.10) where 

The exact propagator is taken to be statistically sharp. For isotropic turbulence it 
may be written in the form 

Ha,(k; t ,  8) H,p(k; S,  t ’ )  = Hap(k; t ,  t ’ ) ,  Ha,(k; t ,  t )  = 1. 

H,p(k; t ,  t’) = Dap(k) H(k; t ,  t’), (2.11) 

where H(k; t ,  t‘) may be referred to as the propagator function. 

the result for isotropic non-stationary turbulence as follows : 
The derivation of the LET equations for Hand Q may be found in I. Here we quote 

(9. vk2) H ( k ;  t, t’) = W(k; t ,  t’) (t’ < t ) ,  

(;+vk’)Q(k; t,t’) = P ( k ;  t , t ‘ ) ,  

(2.12) 

(2.13) 

and for the diagonal values of the correlation function 

(a+2vk2) Q(k ;  t ,  t )  = 2P(k ;  t ,  t ) .  (2.14) 

The inertial-transfer terms W and P are given by 

r t  1 

ds H(k; s, t ’ ) H ( j ;  t ,  s )  Q(Ik+j ( ;  t ,  R)] (2.15) 
- Jo 

where 
- [lu(k2 +jz) - kj( 1 + 2p2)] (1 -p2)  k j  

‘kjp - k2 +j2 - 2pkj > (2.17) 

and p is the cosine of the angle between the vectors k and j. 
It should be noted that (2.13), (2.14) and (2.16) are identical (notational differences 

aside) with corresponding DIA equations, whereas (2.12) and (2.15) differ from their 
DIA equivalents by the presence of the first term (i.e. the one containing Q-l) on the 
right-hand side of (2.15) for W(k; t ,  t ’ ) .  
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3. Evolution from arbitrary initial conditions 
In  formulating the problem of isotropic turbulence, one specifies the statistical 

ensemble by one’s choice of the arbitrary, random, stirring forces. For reasons of 
convenience these are assumed to have Gaussian statistics ; to do work on the system 
a t  a constant rate; and to excite predominantly low-k modes of the system. Thus, 
under the action of the inertial transfer of energy to higher modes, the system should 
reach a stationary state with some universal behaviour in the higher-k modes. Of 
course, even if such a system were physically realizable, this formulation reflects the 
artificiality of the concept, compared with flows of engineering significance (in 
general, inhomogeneous shear flows). 

Nevertheless, the simplest ‘real ’ turbulence problem is generally agreed to be a 
version of the above formulation; that is, free decay of isotropic turbulence. In  
practice this is realized in the laboratory by placing a grid in a potential-core flow 
in a wind (or water) tunnel. Some grid-pitches downstream, the wakes coalesce to 
form turbulence which is nearly isotropic. The subsequent decay of this turbulence 
with distance from the grid may be transformed to a time decay in a frame moving 
with the freestream velocity. In  this situation, the concept of stationarity is replaced 
by self-preservation, where the energy spectrum (suitably scaled) becomes independent 
of time. We can also expect universal behaviour at high wavenumbers where spectra 
(again suitably scaled) exhibit similarity. Here the low-k behaviour depends on the 
arbitrarily chosen initial spectra E(k ,  0). (That is, the arbitrariness of the stirring 
forces a t  all times is replaced by the arbitrarily prescribed initial conditions.) 

Four different initial spectra were used in the calculations for low-to-moderate 
Reynolds numbers. They are shown in figure 1 .  Three of them - spectra I, I1 and 
I11 - are identical with spectra B, C and D of Kraichnan (1964). They all peak a t  
the same wavenumber k,,, = 4 x 2: = 4.75683 (in arbitrary units), and represent 
successively less-peaked initial distributions of energy. Noteworthy points are that 
spectrum I1 is self-preserving under purely viscous decay and spectrum I11 becomes 
rapidly self-preserving under the combined actions of inertial transfer and viscous 
decay. 

Spectrum IV is a modified form of spectrum 111. It was chosen in the light of 
comments made by Van Atta & Chen (1969), who compared their measured 
dissipation spectrum with spectra calculated by Kraichnan (1964). They found that 
the calculated spectra exhibited maxima a t  higher wavenumbers than the measured 
spectra. They suggested that this might be due to the choice of initial spectra, whose 
maxima were also shifted towards high wavenumbers. Accordingly, spectrum IV has 
been chosen to test the effect of a lower value of the peak wavenumber, in this case 
k,,, = 2.0. 

These four trial spectra may each be written in the form 

E(k,  0) = c1 kC2 exp ( -c3 kC4), (3.1) 

where the values of the constants for each spectrum are given in table 1 ,  and each 
spectral form satisfies 

jOm E(k,  0) dlc = $. (3.2) 

(That is, the mean-square level of the turbulence a t  t = 0 is taken to be unity.) 
From the energy spectrum, we can obtain the mean energy E(t) per unit mass, the 
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k 
FIGURE 1. Initial wavenumber spectra 

Spectrum 

number C1 cz c3 c4 

I 0.524169 x lo-* 4 0.883882 x 10-l 2 
I1 0.662912 x 10-l 1 0.220971 x 10-l 2 
111 0.662912 x 10-I  1 0.210224 1 
IV 0.4 1 0.5 1 

TABLE 1. Values of constants c in E(k, 0) = c, kca exp ( -c3 kc4) 

r.rn.s. value of any velocity component u(t) and the rate of dissipation of energy e(t)  

and e ( t )  = 2u k2E(k, t )  dt. 6 
(3.3) 

(3.4) 

It is also convenient to have forms for the transfer spectrum T(k,  t ) :  

T(E, t )  = 8nk2P(k;  t ,  t ) ,  (3.5) 

and, following Kraichnan (1964), the modal time-correlation R(k;  t ,  t’): 

such that & ( k ;  t ,  t )  = 1 .  (3.7) 
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The integral scale L(t) and the Taylor microscale h(t) may be defined by (Batchelor 
1971) 

L(t) = [:s," k-lE(k, t )  dk]/E(t), (3.8) 

h(t) = [5E(t)/fOw k2E(k, t )  dk]l, 

with associated Reynolds numbers 

and 

(3.9) 

(3.10) 

(3.11) 

As we shall see, the skewness of the longitudinal velocity derivative is perhaps the 
most sensitive of the integral parameters. It is given by (Batchelor 1971) 

We shall normally refer to  8(t) just as the skewness factor. 
As experimentalists measure only the one-dimensional energy spectrum $l(k, t )  we 

should note the relationship between it  and the three-dimensional spectrum. It is 
given by (Batchelor 1971) 

#l(k, t )  = k (1 --<)p-lE@, P t )  dp. (3.13) 

Finally, we shall follow Kraichnan (1964) in defining a characteristic wavenumber 

(3.14) 
and velocity 

k, = (15R,)th-', vd = (R,/l5i)-j~(t). 

Kraichnan found that for low R, scaling with k, and vd, rather than with the 
Kolmogorov similarity variables k, and v, (for the relationship between k, and k,, 
and vd and v, see Kraichnan 1964), gave a better collapse of the data for purposes 
of studying similarity and self-preservation. I n  order to facilitate comparisons, we 
have also used (3.14) in the present work. 

4. The numerical analysis 
Our objective here is to  integrate (2.15)-(2.17) forward in time from arbitrary 

initial states, viz the initial spectra shown in figure 1.  Before discussing the numerical 
methods we should make two general points. 

First, there is the question of how to compare the results of our calculations with 
results obtained from experiments. As Herring & Kraichnan (1972) have pointed out, 
approximations of the kind presented here are based on a prescribed initial state with 
zero triple correlations and the integrations are carried out for relatively short times. 
In  contrast, laboratory experiments involve initial states which are rather complicated 
and have much longer evolution times. To some extent we have already noted this 
when we chose spectrum IV, and of course the computer experiments of Orszag & 
Patterson (1972) go some way to meet this difficulty. We shall discuss these aspects 
further a t  a later stage but here we shall deal with a particular point concerning the 
LET theory. 
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Referring to (2.11) for the propagator H ( k ;  t ,  t‘), the right-hand side is given by 
(2.15). The first term on the right-hand side is what distinguishes LET from DIA. 
The particular point we are concerned with is this: the integration over s in the 
numerator has a convolution character, whereas Q ( k ;  s , s )  in the denominator is a 
single-time quantity. If a stationary state is attained, then the denominator just 
becomes Q ( k ) ,  provided the non-stationary state is some time in the remote past so 
that its effects may be neglected (see I) .  However, the problem here is that this 
condition is not satisfied. We have only very short evolution times to a state which 
is self-preserving (i.e. scaled spectra independent of time). As & ( k ;  s , s )  does not 
contain either t or t’, i t  is relatively slow in evolving. This can lead to spurious effects 
during the initial period of evolution (it should be emphasized that this is a matter 
that only affects the initial period and, even then only when the prescribed initial 
spectrum is very peaked like, for example, spectrum I). For this reason we have 
simplified the computational problem by means of the following practical ex- 
pedient. We have made the approximation that Q ( k ;  s, s) in the denominator in 
(2.15) is updated t o  Q ( k ;  t ,  t ) .  It should be noted that this is not a Markovian 
approximation; memory effects are still fully represented in the numerator of this 
term. The approximation was tested by computing both forms for E(k,  0) as given 
by spectrum 111, which is self-preserving. There is little difference between the two. 
Even the evolved skewness factor s(t) differed by less than 1 yo between the two cases. 

Our second general point is that  we used exactly the same numerical methods as 
used by Kraichnan (1964, 1966). but there was one non-trivial difference in the 
formulation to which they were applied. In  calculating the wavenumber integrals in 
DIA, Kraichnan worked with the scalar magnitudes of three wavevectors k, j and 
1 (say), which add up to form a vector triangle. I n  our case we work with k and j ,  
and then specify 1 in terms of k, j and the cosine of the angle between k and j ,  which 
we call p. Mathematically, of course, the two procedures are equivalent. The 
differences between them come in the way they affect rounding-off and truncation 
errors in the numerical calculations. For this reason we have made our own 
calculations of DIA (which merely means setting the first term of the right-hand side 
of (2.15) to zero). This allows us to:  ( a )  make a valid comparison of LET with DIA; 
and (b)  check our calculations by comparing our results for DIA with those of 
Kraichnan (1964). 

4.1. Reduction to discrete wavenumbers 

We begin by considering the discrete representation of the wavenumbers k and j. Let 
the range of these variables be truncated to the finite range (k,,,, ktop), where kbot 
may or may not be zero. We divide this range into N (in general, non-uniform) 
intervals Ak,, with n increasing with wavenumber. I n  each interval we choose a centre 
value k ,  (calculated as the geometric or arithmetic mean of the limits of the interval, 
depending on whether we employed constant logarithmic or linear steps). The scalar 
variable p lies in the range (+ 1 ,  - 1) and we divide this into M constant linear 
intervals of size Apm. 

As an example, we may replace (2.15) and (2.16) for the inertial-transfer terms W 
and P by 
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N M  r r t’ 

where &,( t , t ’ )  = &(kn; t,t’), Hn(t,t’) = H(kn; t,t’) etc., 

with T n p m  = 2nk: L n p m  Akp Apm, (4.3) 

and (4.4) 

In  (4.1) and (4.2), since &(lk+jl; t , t’)  is a function of all three scalar variables k, j 
and p, we have given it the triple subscript npm when representing it in discrete form. 

At this point we should note the advantages of using the present formulation, which 
leads to a single scalar coefficient Znpm in (4.1) and (4.2), instead of Anml and Bnml, 
which occur in (1 1.3) and (1  1.4) of Kraichnan (1964). First, the estimation of Tnpm, 
as given by (4.3)) is more straightforward than that of Anml and Bnml. Secondly, 
according to Kraichnan (1964), it  is necessary to apply a correcting factor to Anml 
and Bnml to eliminate numerical errors when logarithmic steps are used and, say, 
conditions like k, B kp are encountered. This entailed additional calculations which, 
because of our rectangular integration field and the linear discretization of p, were 
not found to be necessary in our present formulation with gnpm. 

4.2. Reduction to discrete times 
In order to reduce (4.1) and (4.2) to discrete times, we divide the period from t = 0 
up to the final instant 1 = t ,  into intervals Att (i = 1,2, . . . , I ) ,  which in general will 
be non-uniform. Here Att is taken to be of the order of the smaller of the characteristic 
time for convection and the viscous decay time. These are respectively [u( t )  ktop]-l 
and [uk2top]-1. Let ti be the time a t  the end of the ith interval ( t I  = tp; to = 0). We 
begin by using the trapezoidal rule to express the integrations over s in (4.1) and (4.2) 
as sums for Wn(ti, t j )  and P,(ti, t j ) .  In  order to reduce (2.12) to a difference equation, 
we first approximate Wn(tr, t j )  by the value 

Wn(t i , t j )  = B[wn(ti,tj)+ Wn(tt-l)tj)I, 

which is constant over the interval At,. Integration over the interval At, then yields 
for (2.12) 
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To use the implicit integration scheme (4.5) and (4.7) we go through the following 
stages. 

(i) At the ith step, estimate Ati as the smaller of the characteristic times for 
convection and viscous dissipation. 

(ii) Next compute temporary values H;(t, , t , ) ,  &; ( t i , $ )  (j < i )  and &;(t t , tr)  by 
replacing W,(ti, t,),  P,(ti, t,) andP,(t,, t c )  on the right-hand side by W,(tc-l, t , ) ,  P,(ti-l, t,) 

To obtain the permanent values, we then evaluate W,(ti,t,), P,(ti,t,) and 
P,(ti, t i )  by substituting the temporary values for each factor H and Q that appears 
on the right-hand side with argument i .  In  the process we use the symmetry of 
&,(ti, t,) under interchange of ti and t j .  

(iv) To start step i + 1, these W, and P, are recomputed using permanent H -  and 
&-values. 

All four stages are then carried out for each value of the index n. 
Some of the calculations used the above scheme as written. That is, one temporary 

and one permanent value were obtained for H ,  and Q,. We shall refer to such 
calculations as being for single iteration. However, one may iterate the predictor- 
corrector scheme to any order, until the difference between temporary and current 
values is less than some specified error. We shall refer to such calculations as being 
for unlimited iterations. 

and Pn(ti-1, t z - 1 ) .  

(iii) 

5. Results for low-to-moderate Reynolds numbers 
Spectra 1-111 were computed to give evolved microscale Reynolds numbers R, of 

order 20. Spectrum IV was computed to give an evolved R, - 40. The various 
numerical values are summarized in table 2 for all runs, and the corresponding initial 
values of the integral parameters are given in table 3. 

In  practice we found that the computation of LET behaved much like that of DIA, 
but was slower to converge at higher wavenumbers. To give an example, let us 
consider the computation of spectrum I a t  the seventh time step, where 
t = 0.48L(O)/u(O). If we define the temporary value of the spectrum function to be 
&(l) and the permanent value to be &@), then at k, = 2 LET gives &(l)  = 0.1 159 x 
and &(2) = 0.1159 x However, at k, = 26.91 LET gives &(l) = 0.1433 x lo-’ and 
&@) = 0.1992 x lo-’. 

For this reason, we have considered two cases. First, we computed LET for spectra 
1-111 using single iteration and made a detailed comparison with DIA. Secondly, 
we computed LET for spectra I, I11 and IV using unlimited iterations, until 
temporary and permanent values agreed (even at large wavenumbers) within 10 yo, 
and made a detailed comparison with DIA and with the results of experiments. In  
both cases DIA was only calculated for single iteration: our experience bore out 
Kraichnan’s ( 1964) conclusion that further iteration of the predictor-corrector 
scheme made no difference to the results for DIA. 

5.1. Comparison of LET with DIA: single iteration and unlimited iterations 

We calculated values of the energy spectrum, the dissipation spectrum, the transfer 
spectrum and the integral parameters for both LET and DIA for the initial conditions 
given by spectra 1-111. The general qualitative behaviour of both approximations 
was found to be quite similar, although there were small quantitative differences 
which we shall discuss in $5.2. 

As might be expected from the numerical examples given a t  the beginning of this 
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- 

- 

- 

- 

- 

- 

Spectrum 
number h o t  ktop Akt Pbot ptop Ap P At1 trt 

I 1.83401 29.3441 4 + I  - 1  -0.1250 0.01189 0.034 0.84 
I1 1.09051 29.3441 + +1  -1 -0.1053 0.01189 0.034 0.95 

IV 0.2806 35.9182 4 + I  -1 -0.0952 0.008 0.027 1.00 
I11 1.09051 41.4989 + 1  - 1  -0.0952 0.01 0.024 0.65 

t Ak is defined by k,, , /k,  = 2”. 
$ By this time the change in E(t)  between any two successive time steps would be anywhere 

between 7 yo and 2 yo, depending on the initial peakedness of the spectrum. 

TABLE 2. Numerical data for runs a t  low-to-moderate RA 

60 - 0.6 

50 - 0.5 

40 - 0.4 
R, ( t )  

30 - 0.3 
R,(t)  S ( t )  

20 - 0.2 

10 - 0.1 

-~ ~ 

Spectrum 
number E(O) s(0) N O )  L(0) 4 0 )  RdO) RAW 

I 1.4847 1.0092 0.9949 0.5140 0.4182 43.01 34.99 
I1 1.4631 1.6157 0.9876 0.5218 0.3281 43.34 27.26 
111 1.4659 3.9764 0.9886 0.4035 0.1920 39.89 18.98 
IV 1.5893 0.6157 1.0293 1.0333 0.4544 132.96 58.47 

TABLE 3. Initial values of the integral parameters for low-to-moderate RA 

1.6 

1.4 

1.2 

1 .o 
E(t) 

E(t) 
Eo o,8 

E m  

0.6 

0.4 

0.2 

1 

I 
I I I 1 0  _In 
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FIQURE 2. Variation of integral parameters; spectrum I :  -, 
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section, a detailed comparison revealed no significant difference between LET values 
of E(k ,  t ) ,  vk2E(k, t )  and T(k,  t )  calculated using single iteration and unlimited 
iterations. Even the integral parameters remain quite unchanged by further iterations 
of LET. However, there is one notable exception. A comparison of figures 2 and 3 
shows that the LET value for the evolved skewness is increased by about 7% 
following further iteration. In contrast, the result for DIA is found to change by less 
than 1 Yo. 
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Overall, similar results were found when we compared the LET results for spectrum 
I11 from only single iteration with those from unlimited iterations. That is, increasing 
the number of iterations made little difference to anything except the skewness factor. 

All of this may seem to be labouring the point. But in $6 we shall present 
calculations of LET a t  large Reynolds numbers. This was a formidably large 
calculation and, in order to reduce machine time to  tolerable levels, i t  was necessary 
to restrict most of the calculation to single iteration. It was therefore important to 
establish, as clearly as possible, the effect of this restriction. 

5.2. General calculation of LET: unlimited iterations 

I n  figures 4-8 we present results for initial conditions given by spectrum I for both 
LET and DIA. From figure 4 we see that the LET energy spectrum evolves slightly 
faster than that of DIA. This was also found to  be the case with Spectra I1 and 111. 
This may be attributed to  LET being more efficient than DIA a t  transferring energy 
to higher wavenumbers. This is shown up clearly by the higher tails of the LET curves 
for k2E(k,  t )  and T(k,  t )  in figures 5 and 6. 

One qualitative difference between the two approximations was the development 
of kinks in the evolving LET energy spectrum but not in the corresponding DIA 
spectrum. (These kinks show up more clearly in the dissipation spectrum and can 
also be seen in the transfer spectrum.) This behaviour did not occur with either 
spectrum I1 or spectrum 111. Presumably it was due to the more efficient energy 
transfer mechanism of LET failing to cope with an initial spectrum (i.e. spectrum 
I) which was highly peaked. The development of kinks may well not be an artifact 
of LET. Similar kinks have been found experimentally by Stewart & Townsend 
(1951). 

The variation of integral parameters already shown in figure 3 tends to bear out 
the above points about the comparison of LET and DIA. I n  particular we should 
note the dissipation rate a(t) and the skewness S( t )  are both larger for LET than for 
DIA. I n  fact the value of S ( t )  is some 16% larger than that from DIA. I n  view of 
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FIQURE 5. Evolution of dissipation spectrum; spectrum I :  -, LET; ----, DIA. 

1, tu(O)/L(O) = 0 ;  2, tu(O)/L(O) = 0.5; 3, tu(O)/L(O) = 1.0; 4, tu(O)/L(O) = 1.6. 

the compatibility of LET with the Kolmogorov distribution, this is an interesting 
result. When comparing DIA with the test field model, Herring & Kraichnan (1972) 
surmised that the underestimation of S( t )  by DIA was a real physical effect, 
associated with lack of random convection invariance. 

The differences between LET and DIA may also be expected to show up in the 
way they handle two-time correlations. Plots of the modal time correlation R(k,  t , -  t )  
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FIGURE 6. Evolution of transfer spectrum; spectrum I :  -, LET; ---, DIA. 
1, tu(O)/L(O) = 0.1; 2, tu(O)/L(O) = 0.5; 3, tu(O)/L(O) = 1.0; 4, tu(O)/L(O) = 1.6. 
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FIGURE 7. Variation of modal time-correlation and response functions at a relatively low 
wavenumber; spectrum I ;  kL(0) = 2.4, tPu(0)/L(O) = 1.6: -, LET; ---, DIA. 

and the propagator function H ( k , t , - t )  for LET and DIA (strictly, the second 
quantity for DIA is the response function G ( k ,  t, - t )  in Kraichnan’s notation) are 
shown in figures 7 and 8. In general terms, all four curves behave in much the same 
way. But, apart from the obvious quantitative differences there is one important 
qualitative difference. In LET H is generally larger than R, while the reverse is true 
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FIQURE 8. Variation of modal time-correlation and response functions at a relatively high 
wavenumber; spectrum I ;  kL(0) = 9.8, tfu(0)/L(O) = 1.6: -, LET; ---, DIA. 

of DIA. This difference is less apparent a t  the higher wavenumber (see figure 8), where 
a t  intermediate times the LET values for H and R tend to group rather closely with 
the DIA value for H .  Also, while all four curves exhibit unphysical behaviour in the 
form of negative values a t  long times, the LET value of H also exceeds unity a t  short 
times. 

I n  figures 9 and 10 we show the effect of initial spectrum shape on the evolved 
energy spectrum and the evolved dissipation spectrum (in the latter case we have 
used Kraichnan’s DIA similarity variables as defined by equation (3.14) of the present 
paper). The development of similarity at higher wavenumbers is quite apparent. We 
have only shown results for LET here, but the general behaviour is much like that 
of DIA (Kraichnan 1964), although (consistent with the above discussion) the LET 
case appears to be evolving slightly faster. 

The development of self-preservation for spectrum I and spectrum I11 may be seen 
from figures 11 and 12. Here, the scaled energy spectrum is plotted against 
wavenumber scaled by A(t ) .  Clearly there is some persistence of initial shape, but. 
apart from that, one may conclude that (as in the case of DIA) there is considerable 
self-preservation for both initial spectra. Differences between Spectrum I and 
Spectrum I11 show up more clearly in the evolved dissipation spectrum (not 
presented here), but these are small. I n  particular, a plot of the dissipation spectrim 
indicates more-or-less perfect self-preservation for spectrum 111 (initially self- 
preserving), 

5.3. Comparison with experiment 

Figure 13 shows comparisons of the one-dimensional dissipation spectrum for hot h 
LET and DIA with some experimental results. Clearly both approximations agree 
quite well with experiment. The calculations are presented for R, - 38 (LET) and 
R, - 41 (DIA). Here the comparison is with experimental results at R, - 39 (Stewa,,rf. 
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& Townsend 1951), RA - 49 and - 35 (Chen 1968), RA - 38 and - 37 (Comte-Bellot 
& Corrsin 1971), and RA - 45 (Frenkiel & Klebanoff 1971). 

From figure 13 the differences shown between LET and DIA really are rather small. 
A better quantitative test comes from a comparison of their predictions for the 
skewness. As Herring & Kraichnan (1972) have pointed out in their comparison of 
various theories, curves for the skewness as a function of time seem to be the most 
sensitive measure of the differences between theories. I n  figure 14 we plot the results 
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numerical simulations (Orszag & Patterson 1972). 

for AS($) from LET and DIA, and compare them with the results of the computer 
simulation by Orszag & Patterson (1972). In both the computer simulation and the 
present calculations, the initial conditions were given by spectrum I. Clearly the LET 
results agrees quite well with that of the computer simulation: certainly as well aa  
the test field model (Herring & Kraichnan 1972). AIso it should be noted that our 
calculation €or DIA gives S(t)  about 4 % larger than in that reference. 

We shall return to  comparisons of the skewness factor with experiment at a later 
stage when we discuss the calculations for large Reynolds numbers. To conclude this 
section we shall make a few remarks about two-time correlations. 
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The differences between the LET and DIA forms of the modal time correlation have 
already been noted. The only source of data for further comparison seems to  be the 
computer experiment of Orszag & Patterson (1972). These authors note that the DIA 
modal time correlation R(k;  t, tf)  agrees quite well with their result obtained from their 
numerical simulation, but that a t  high wavenumbers there is serious disagreement (of 
the order of 20 yo). We have made our own comparison, which confirms this behaviour 
for DIA, but suggests that the LET modal time correlation agrees much more closely 
with the simulation. Again, this result seems to be consistent with the higher energy 
transfer rate, dissipation rate and evolved skewness factor of the LET closure. 

5.4. Discussion 
The interpretation of our results depends of course on the accuracy of the numerical 
procedures. As stated earlier, we used the same numerical methods as Kraichnan 
(1964), but applied them to a slightly different mathematical formulation. We were 
able to  cross-check our calculations by comparing our results for DIA with those of 
Kraichnan (1964). I n  all cases we found good general agreement. I n  the particular 
case of the skewness, our calculation of the DIA value for 8(t) was less than 5 yo larger 
than Kraichnan’s. 

Independent calculations of LET and DIA have been carried out by Cliffe (1983 
private communications) on the CRAY-1 computer at AERE, Hanvell. Cliffe has 
used Kraichnan’s (1964) method adapted only to allow i t  to be run on a vector 
processor. Broadly, his results confirm ours for the systematic differences between 
LET and DIA, but it is interesting to  note that his calculation of the evolved 
skewness is 5.5 yo below ours. 

A measure of the overall accuracy of the numerical calculation can be obtained 
from an examination of the energy-balance equation. From (2.14), and using (2.8) 
and (3.5), we obtain the well-known form 

aE(k’t)+2~kZE(k, t )  = T(k,t) .  
at 

Integrating with respect to  k yields the energy balance 

dE 
-+s  = 0, 
dt 

and the overall error A may be written as 

1 dE 
s dt 

A = - - + l .  

Evaluating A from our data for the various runs, we obtain estimates for A as follows: 

spectrum I : A - a t  small t ,  A N at large t ; 
spectrum 11: A N low2 a t  small t ,  A - a t  large t ;  
spectrum I11 : A - a t  small t ,  A N at large t ; 
spectrum IV: A - a t  small t ,  A - at large t .  

These values of A are much the same order of magnitude as the results reported by 
Herring & Kraichnan (1972). I n  all, therefore, our calculations seem to achieve much 
the same level of accuracy as others reported in the literature. 

When the LET theory was reported in I, its main claim was that, although in 
general form much like DIA, i t  had (unlike DIA) the Kolmogorov distribution as its 
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infinite-Reynolds-number solution. (N.B. All remarks here refer to  Eulerian formu- 
lations.) However, there was a t  least the possibility that compatibility with the 
Kolmogorov spectrum has been achieved a t  the expense of low-Reynolds-number 
behaviour. I n  short, LET might not be able to  emulate DIA in predicting decaying 
isotropic turbulence. 

These doubts would seem to be effectively banished by the present work. Clearly 
our results show that LET is not inferior to DIA in predicting the various parameters 
of grid turbulence. Moreover, LET exhibits higher rates of energy transfer and higher 
values of the evolved skewness S ( t )  than DIA. Presumably this may be connected 
with the ability of LET to give the k-f law as the solution at infinite Reynolds number. 
I n  all, the behaviour of LET R, up to - 40 is quite encouraging. I n  $6 we shall 
present the results of calculations for LET at large but finite values of R,. 

6. Results for large Reynolds numbers 

prescribed by spectrum V : it  was given by 
The equations were integrated forward in time from an initial spectrum shape 

spectrum V : E(k,O) = 2nk-5. (6.1) 

This spectrum was chosen, along with a value of the kinematic viscosity u = 0.008, 
to permit a close comparison with the computations of the Lagrangian-history 
closures ALHDI and SBALDHI (Herring & Kraichnan 1979). The initial data for 
the run are summarized as follows : 

energylunit mass E(0)  = 40.256; 
dissipation rate ~ ( 0 )  = 22.507; 
r.m.s. velocity u(0)  = 5.180; 
Taylor microscale h(0) = 0.378; 
integral scale L(0) = 0.853; 
microscale Reynolds number 
integral-scale Reynolds number 
(For definitions of these parameters see $3.) 

For the calculations presented here kbot = 0.1114, ktop = 71.8601 and Ak = 
octave. Also for the integral over p, we took M = 28 and Ap = -0.07143. The time 
step At was taken to be of the order of the smaller of the two characteristic times 
t ,  = [u(t)  ktOp]-l and t ,  = [ ~ k t ~ ~ ] - ~ .  I n  the present calculation, the values of these 
times a t  the beginning of the first time step were t ,  = 0.0027 and t ,  = 0.0242. We 
took the time step to be At = 2t, throughout the calculation. 

The calculations reported here were quite costly in terms of machine time. If we 
take one of the calculations a t  low R, to  provide a standard of comparison, then the 
case of spectrum I took - 2; h on the ICL 2972 to reach t, = 0.84 in twenty time 
steps. Typical machine terms were - 35 s to  go from t ,  to t ,  and - 1 . 1  x lo3 s to  go 
from t , ,  to t lB .  

On the same machine, the present calculation a t  high R, took - 260 h to  reach 
t ,  = 0.3 in 55 time steps. The time required for the second time step was - 2.6 x lo2 s, and for the last time step - 4.6 x lo4 s! Thus we only present a very 
limited set of calculations (although they are in fact quite adequate for a comparison 
with both Lagrangian-history theories and with experimental results). 

The results reported here are for Ak = 5 octave, corresponding to 28 logarithmic 
intervals in the given range of wavenumbers. Tests were carried out with a finer mesh 

RA(0) = 244.95; 
R,(O) = 5524. 
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FIGURE 15. Evolution of three-dimensional energy spectrum ; spectrum V. 

of Ak = 0.1333 octave (corresponding to  70 wavenumber intervals) but these were 
abandoned a t  the eighth time step as the machine time required had become much 
too large. A comparison of results for the two different meshes showed that the 
skewness 8(t) was changed by less than 2 yo a t  the eighth time step. 

A comparison was also made of the difference between single iteration and 
unlimited iterations of the predictor-corrector scheme (see §$4 and 5.1) up to the 13th 
time step. Again the skewness (the most sensitive of the integral parameters) varied 
by less than 2 %  between the two cases a t  the thirteenth time step. Thus, in the 
interests of keeping the machine time to reasonable levels, single iteration was 
employed thereafter. 

6.1. Evolution of the LET  equations with time 
The evolution of the energy spectrum from the initial form given by spectrum V is 
shown in figure 15, where we plot log, E ( k ,  t )  against log, k. This form of graph shows 
little change in the inertial range as time goes on, but the development of the roll-off 
a t  higher wavenumbers due to viscous dissipation is really quite marked. 

I n  figure 16 the evolution of the various integral parameters is shown. Two aspects 
of this graph are worth a particular mention here. First, it may be seen that the 
microscale Reynolds number R, evolved from an initial value of - 245 to a final value 
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of - 533. Secondly, the skewness reached a plateau with an asymptotic value of S(t) - 0.35. This is somewhat lower than the value found ( N 0.5) for the smaller values 
of R,. It is also (as we shall see) very much lower than the values obtained at  large 
R, for the Lagrangian-history theories (Herring & Kraichnan 1979). 

6.2. Comparison with experiment and with ALHDI and SBALHDI 

The comparisons with experimental results and with the predictions of ALHDI and 
SBALHDI (Herring & Kraichnan 1979) are shown in figures 17-19. Of these, figures 
17 and 18 show the evolved one-dimensional LET energy spectrum compared 
respectively with representative experimental results and with the two Lagrangian- 
history theories. Here the scaling in the terms of the Kolmogorov wavenumber k, given 
by 

k, = (e /v3)$.  (6.2) 

In both cases, the agreement is good. However, clearly (although there is little in it), 
the agreement between LET and SBALDHI in the inertial range is particularly close. 

The Kolmogorov constant a may also be obtained from the calculations. The LET 
value for this turns out to be - 2.3, compared with a - 2.1 for SBALHDI and 
a - 1.8 for ALHDI. The first two values may seem on the high side but it is worth 
noting that Pao’s (1965) analysis of the experimental data shows that values of 01 
up to 2.2 (and possibly larger) are not incompatible with measured spectra. 

The skewness S(t) has previously been found to be the most sensitive indicator when 
distinguishing between theories (Herring & Kraichnan 1972). Values of the skewness 
for LET, ALHDI and SBALHDI are shown as functions of time in figure 19. It is 
interesting to note that the difference between the two Lagrangian-history theories 
is about the same as that between SBALHDI and LET. We also note that both 
Lagrangian-history theories seem (more than LET) to be still evolving at  t = 0.3. 

Finally, in figure 20 we present both theoretical and experimental values of evolved 
skewness factor over a wide range of Reynolds numbers. Clearly the scatter of the 
experimental data is so large that none of the theoretical values may be said to be 
incompatible with experiment. However, it is tempting to suggest that the distribution 
(and general trend with R,) of the experimental results tends to favour the low value 
of S(t)  predicted by LET at  large Reynolds numbers. 
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klk, 
FIQURE 17. Comparison of evolved one-dimensionel LET energy spectrum with experimental 
results. Theory: -, LET, R, - 533. Experiments: 0, 0 ,  A, A, R, - 2000 (2/2/60, Grant et 
al. 1962); m, R, - 538 (Kistler & Vrebalovich 1966); V, R, - 308 (Uberoi & Freymuth 1969); 
0,  RA - 850 (Coantic & Favre 1974). ---, k-i. 

6.3. Comparison of LET with A L H D I  and S B A L H D I  at low R, 
I n  $5  we saw that LET behaved very much like DIA at low values of R,. I n  this 
part of the paper we have found that LET behaved very much like SBALHDI a t  
high Reynolds numbers (with the exception of the evolved skewness 8(t)). Herring 
& Kraichnan (1979) have calculated ALHDI and SBALHDI at low Reynolds 
numbers using as initial conditions spectrum I and spectrum 111. Logically, there- 
fore, we should complete our present comparisons with the Lagrangian-history 
theories by examining the case of low Reynolds numbers. 

I n  figure 21 we show the three-dimensional dissipation spectrum as predicted by 
LET and DIA, ALHDI and SBALHDI (Herring & Kraichnan 1979). At smaller 
wavenumbers it is clear that LET agrees closely with the two Lagrangian-history 
theories. At higher wavenumbers DIA, SBALHDI and LET are in close agreement. 
However, if we take the overall behaviour of the four theories a t  all wavenumbers, 
then clearly LET and SBALHDI agree much more closely than any other pair of 
theories. 
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FIGURE 18. Comparison of evolved one-dimensional LET energy spectrum with ther theoretic 1 
results: -, LET; ---, ALHDI; ----, SBALHDI (Herring & Kraichnan 1979: values from 
their figure 9 at t = 0.3 replotted for this comparison); ---, k-5. 

7. Conclusion 
From the results presented in the present paper it seems reasonable to claim that 

the LET theory offers good quantitative predictions of decaying isotropic turbulence 
over a wide range of Reynolds numbers. Furthermore, it seems that the purely 
Eulerian LET theory behaves very much like the Lagrangian-history theory SBA- 
LHDI a t  both high and low values of the Reynolds number. Indeed, with the 
exception of the skewness 8(t), the two theories probably agree well within any 
relative error due to the differences between our numerical calculations and those of 
Herring & Kraichnan (1979). From our point of view this is an encouraging result. 
We feel that it justifies our submitting LET to further tests, such as passive scalar 
convection by isotropic turbulence. 

This will be the subject of further work, but we shall conclude this paper with a 
few general remarks on turbulence closure approximations. In particular, we restrict 
our attention to renormalized perturbation theories (of which LET is one: a list is 
given in 3 1 ) .  

It could be argued that the strength of RPT approaches lies in their generality and 
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FIGURE 19. Evolution of skewness factor; comparison with other theories: -, LET; ---, 
ALHDI; ----, SBALHDI (Herring & Kraichnan 1979). 
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FIGURE 20. Comparison of evolved skewness factor. Computed results: H, LET; +, DIA; 0,  direct 
numerical simulation (Orszag & Patterson 1972); v, ALHDI and, A, SBALHDI (Herring & 
Kraichnan 1979); 0,  direct numerical simulation (Brachet et al. 1983). Experimental results: 0, 
Batchelor & Townsend (1949)*; A, Stewart & Townsend (1951); x , Comte-Bellot (1965)*; @, 
Frenkiel & Klebanoff (1967) ; , Van Atta & Chen (1969) ; V, Wyngaard & Tennekes (1970) ; (>, 
Gibson et al. (1970)*; 0, Kuo & Corrsin (1971); 0 ,  Frenkiel & Klebanoff (1971); CD, Friehe et al. 
(1972)*; 8, Betchov & Lorenzen (1974)*; +, Elena et al. (1977)*; a, Tavoularis (1978)*; 0,  
Bennett & Corrsin (1978); ---, Ueda & Hinze (1975). (* as cited in Tavoularis, Bennett & Corrsin 
(1978).) 
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FIGURE 21. Comparison of evolved three-dimensional dissipation spectrum at a low value of RA with 
other theoretical results; initial spectrum as given by Spectrum 111: -, LET; ---, DIA, ---, 
ALHDI; ----, SBALHDI (Herring & Kraichnan 1979); t = 0.6. 

in the absence of ad hoc assumptions or disposable constants (particular theories might 
make more specific claims, e.g. the model representation which guarantees realizability 
for DIA: Kraichnan 1959). Yet one would not need to be unduly cynical to argue 
that RPTs (without exception) are cut off from fundamental status by their inability 
to predict their own errors, and from engineering utility by their enormous complexity 
when formulated for inhomogeneous turbulence. 

There seems to be a growing belief (e.g. Nelkin 1974,1975; Forster, Nelson & Sulem 
1977) that the answer to the first of these problems lies with the renormalization 
group, which has had its successes with critical phenomena (Wilson 1975). At this 
stage it can, of course, be no more than a belief; but it is one that we share (McComb 
1982; McComb & Shanmugasundaram 1983). At the same time, we agree with 
Kraichnan (1982) that  RPTs have had many successes and should not be 
underestimated. 

The second problem - the analytical complexity of RPTs in engineering flows - is 
really one of dimensionality. Without the simplifications of homogeneity and 
isotropy, the calculations in this paper would simply be too large for present-day 
computers. What is needed is an attack on the problem of analytical reduction of 
the second-order equations for shear flows, in order to reduce their complexity to the 
order of (say) the equations computed in the present work. Little appears to have 
been done on this topic (e.g. Edwards & McComb 1972; Leslie 1973). The reason for 
this is probably lack of confidence in existing RPTs. Granted that the first problem 
of a priori accuracy lacks a solution, then one would a t  least look for consistent 
successes on a hierarchy of easier problems, leading up to a simple shear flow. 
Disturbingly, this has been lacking. If we take the simplest non-trivial problem to 
be the one studied here, i.e. free isotropic decay, and consider the performance of DIA, 
then the picture has not been encouraging. A t  low R, Eulerian DIA works well, but 
fails a t  high R,. At high R, ALHDI is successful, but less good at low R,. There are 
many other points of this sort that can be made, and a further discussion will be found 
in Kraichnan & Herring (1978). 

In  view of this, the performance of SBALHDI is distinctly encouraging. However, 
our hope would be that if LET can survive further tests (e.g. tubulent diffusion), then 
its relatively simple structure (compared to the Lagrangian-history theories) would 
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provide a starting point for simple shear flows, such as the free jet or well-developed 
pipe flow. 
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